

Unraveling the signals of sea level and storminess in the southern North Sea of the past millennium

Schmiedl, G.¹, D. Bunzel ^{1,2}, A. Lang ^{3,4}, C. Betzler ¹, S. Lindhorst ¹, U. Mikolajewicz ³, Y. Milker ¹

- 1) Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg
- ²⁾ Present address: Ludwig Franzius Institute of Hydraulic, Estuarine and Coastal Engineering, Universität Hannover
- 3) Max Planck Institute for Meteorology, Hamburg
- 4) Present address: Munich RE, München

Sedimentation and accretion in human-modified salt marshes

Salt-marsh archive

Foto: G. Schmiedl

after the Common Wadden Sea Secretariat (CWSS, 2009) and Bunzel et al. (2020)

Past storminess

In(Zr/Rb) ratio:

indicator for relative changes in the particle-size spectrum

Long-term increase starting from ~1950 CE towards recent times

→ Similarity to the observed amplification in North Sea storminess

Bunzel et al. (2021)

Modelling extreme sea level events in the German Bight

- Downscaling results from an ensemble of global MPI-ESM-LR simulations (32 ensemble members)
- Regional model:
 - REMO regional atmosphere model
 - MPIOM global ocean model with a zoom on the North Sea/German Bight with tides

Research Question:

- Does the intensity of extreme storm floods change?
- All data relative to the mean sea level (which is changing in a warming climate)

Changes in return values, Cuxhaven

Lang & Mikolajewicz (2019)

Spatial distribution of extreme sea level change in a high CO₂ world

Simulated change of 20 yr return values (relative to mean sea level)

Preindustrial 20 yr return values in a high CO₂ world (changes in mean sea level are not included)

58°N

56°N

54°N

52°N

0°

3°E

6°E

9°E

12°E

12°E

Thin black line indicates statistical significance at 95% level

Lang & Mikolajewicz (2020)

Conclusions

- Existing proxy-based sea-level reconstructions bear a so far underestimated storm-climate component.
- Mean accretion rates of 1.2-1.8 cm yr⁻¹ suggest a
 high resilience of salt marshes to ongoing sea-level
 rise as long as sediment availability and natural
 flooding dynamics are maintained.
- Downscaling of a a large ensemble of anthropogenic climate change simulations suggest increasing extreme sea-levels along the North Frisian coast with rising atmospheric CO₂ levels.

