

EGU2023

The Timing of Decreasing Coastal Flood Protection Due to Sea-Level Rise

Tim Hermans, Víctor Malagón-Santos, Caroline Katsman, Robert Jane, D.J. Rasmussen, Marjolijn Haasnoot, Gregory Garner, Robert Kopp, Michael Oppenheimer & Aimée Slangen

> **E-mail: t.h.j.hermans@uu.nl** Postdoctoral researcher @ Utrecht University (IMAU)

- GESLA3 tide gauge data
- Peak-over-threshold analysis •

Esbjerg (Denmark)

- GESLA3 tide gauge data
- Peak-over-threshold analysis

Relevance of the historical centennial event?

• Estimated protection standards FLOPROS (Tiggeloven et al., 2020)

11

Relevance of the historical centennial event?

- Estimated protection standards FLOPROS (Tiggeloven et al., 2020)
- Amplification factor \rightarrow Decrease in degree of protection

"When?" instead of "How much"?

How much more frequently exceeded in 2100?

13

"When?" instead of "How much"?

How much more frequently exceeded in 2100?

14

Sea-level rise 'required' for protection decreases

- Larger where extremes are more variable (steeper curves)
- Uncertainty from extreme value analysis

Timing of protection decreases

- Using relative sea-level projections from IPCC AR6
- Uncertainty propagation

Timing of protection decreases

- Using relative sea-level projections from IPCC AR6
- Uncertainty propagation

within next 30 years at ~28% (Esbjerg in 2112)

Not before 2150 Relative sea-level fall

Available adapation time

Without adaptation

--- With adaptation

Increasingly less time before decreases in protection

• Available adaptation time decreases as sea-level rise accelerates

Summary

- Revisited frequency amplification of extreme sea levels
- Provides adaptation planners information on useful lifetime & available lead times
- Further research could:
 - incorporate dynamic changes in extremes
 - project timing at ungauged locations
 - apply the method locally

Back-up

