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Reanalysis fundamentals

• Reanalyses provide a consistent, gridded record of weather & climate 
by assimilating historical observations into a modern weather 
forecast model (“re-analyzing” the data.)
• To achieve consistency, a single forecast model and single data 

assimilation method are fixed.
• To some degree, the observing network may also be fixed.

Numerical weather 
prediction model 

Data assimilation 
algorithm

Instrumental 
observations

4D estimate of 
global weather



Full input vs sparse input reanalysis
• Full input

• ERA-interim, ERA5, MERRA, MERRA2
• Assimilate most observations that are available 

(in-situ, satellite, upper-air, aircraft)
• Cover latter half of 20th century to avoid 

spurious trends and signals arising from 
significant changes in the observing system

• …Can still be impacted by instruments coming 
online

• Sparse input
• 20th Century Reanalysis, CERA-20C
• Assimilate only surface observations (surface 

pressure, optionally marine winds)
• Extend 100+ years into the past
• Less impact from changes in observing network

Image provided by the NOAA-ESRL Physical Sciences Laboratory from their website at https://psl.noaa.gov/data/writ
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Monthly mean global precipitation

Example: spurious trend in global 
precipitation from observing network change
Ø MERRA: model may have dry bias that 

was corrected by water vapor sensitive 
radiances from AMSU, which came online 
in 1998

Ø 20CRv3 does not assimilate any 
radiances, therefore does not exhibit this 
discontinuity



20th Century Reanalysis (20CR)

Numerical Weather 
Prediction model:
• GFSv14, ~0.75deg
• Prescribed sea surface 

temperature (SST), ice 
coverage, and radiative 
forcings

Data assimilation

Ensemble Kalman Filter with 
80 ensemble members.
➢ EnKF can dynamically move 
sparse information around via 
covariances.

Only surface pressure 
observations are 
assimilated (other obs 
necessary for SSTs, ice)

200 years of weather (1806-2015):
20th Century Reanalysis Version 3 



The 20th Century Reanalysis (20CR) provides a 
global, 200-year history of sub-daily weather

NOAA-CIRES-DOE 20th Century Reanalysis Version 3
§ Estimates temperature, wind, precipitation, 

pressure, humidity, & other variables, from the 
ground to the top of the atmosphere

§ Prescribed sea surface temperature (quasi-
weakly coupled), sea ice concentration, and 
radiative forcing

§ Global 75km grid
§ 3-hourly resolution
§ Spans 1836-2015 [1806-1835 experimental]
§ Data assimilation: Ensemble Kalman Filter with 

80 ensemble members to quantify uncertainty

§ Publicly available: https://go.usa.gov/XTd 

by assimilating only surface pressure observations into a modern weather model

https://go.usa.gov/XTd


20th Century Reanalysis version 3 (20CRv3)
System improvements over 20CRv2c
• Newer, higher-resolution forecast model
• Larger available set of observations to be assimilated
• Improved observation quality control methods 
• Improved DA methods (4D incremental analysis update, adaptive 

localization, adaptive inflation)
ØImproved confidence estimates

Slivinski, L.C., et. al. (2019) Towards a more reliable historical reanalysis: Improvements for version 3 of the 
Twentieth Century Reanalysis system. Quarterly Journal of the Royal Meteorological Society, 145: 2876– 2908. 
https://doi.org/10.1002/qj.3598 



20CRv2c

20CRv3

Global annual first-guess root mean squared errors in surface pressure

actual

expected

actual

expected

Actual error is the difference 
between 6-hour forecasts and 
not-yet-assimilated observations: 
(𝑜𝑏 − 𝑓𝑔)! "/!

Expected error is the root-mean 
of the sum of ob error variance 
and background ensemble 
covariance at ob time/location: 
(𝜎!$% + 𝜎!&')!

"/!

Ø 20CRv3 errors that are lower 
and more consistent with 
ensemble spread than 
20CRv2c.

20CRv3 outperforms 20CRv2c: 
fit to surface pressure obs



20CRv2c RMSD  20CRv3 RMSD
20CRv2c ens spread  20CRv3 ens spread

Ø 20CRv3 Z500 agrees with ERA5 better than 20CRv2c, and has more consistent ensemble spread
Ø Gray shading shows range of ECMWF and NCEP oper. forecast errors in 2019 for 2-, 3-, 4-day leads
Ø 20CRv3 Z500 errors are comparable to modern 3-4 day operational forecast skill in the NH (consistent with 

earlier predictions by Compo et al, 2006)

Z500 RMSD relative to ERA5 (NH)

Slivinski, L.C., et. al. (2021) An Evaluation of the Performance of the Twentieth Century Reanalysis 
Version 3. Journal of Climate, 34(4): 1417-1438. https://doi.org/10.1175/JCLI-D-20-0505.1

20CRv3 outperforms 20CRv2c: 
500hPa geopot. height agreement with ERA5



20CRv3 correlates well with other reanalyses, and can 
“predict” that correlation

Slivinski et. al. (2021) 

SLP anomaly correlation between JRA-55 and 20CRv3
1958-1978 1979-2015

• Stippling indicates regions of low confidence (large ensemble spread) in 20CRv3
• Pattern correlation is given between confidence field and correlation field
Ø 20CRv3 uncertainty estimates are a good predictor of skill relative to JRA-55



20CRv3 can capture trends & variability in temperature

r=0.8

r=1.0

r=0.9

Detrended correlations

UAH & RSS: two satellite-based 
temperature reconstructions



Future of 20CR – Possibilities 
✔Larger set of available observations 

(smaller errors, greater confidence, 
maybe extend further back in time)
✔Up-to-date forecast model

Coupled ocean-atmosphere
Additional observation types (SST, wind 

direction)
Data-driven models (incorporate Linear 

Inverse Model [LIM] for ocean)
No-DA counterpart simulation



• The 20th Century Reanalysis version 3 (20CRv3) only assimilates surface pressure observations in order to 
consistently extend 200 years into the past

• It agrees well with other reanalyses, independent upper-air observations, and station/satellite-based 
datasets

• Confidence estimates are reliable and 20CRv3 can often predict its own skill
• More information:

• Compo, G.P., et. al. (2011) The Twentieth Century Reanalysis Project. Q.J.R. Meteorol. Soc., 137: 1-
28. https://doi.org/10.1002/qj.776

• Slivinski, L.C., et. al. (2019) Towards a more reliable historical reanalysis: Improvements for version 3 of the 
Twentieth Century Reanalysis system. Quarterly Journal of the Royal Meteorological Society, 145: 2876–
2908. https://doi.org/10.1002/qj.3598 

• Slivinski, L.C., et. al. (2021) An Evaluation of the Performance of the Twentieth Century Reanalysis Version 3. 
Journal of Climate, 34(4): 1417-1438. https://doi.org/10.1175/JCLI-D-20-0505.1

For data access, visualization tools, and references, please visit https://go.usa.gov/XTd 
laura.slivinski@noaa.gov

https://go.usa.gov/XTd




• If obs were perfect (zero error), then RMSDs should fall on diagonal.
• If ob error range estimated accurately and system works well, RMSDs ideally fall in gray swath.
• Above swath: 20CRv3 is overconfident. Below swath: underconfident.
• 20CRv3 geopot. height analysis performs well globally at several vertical levels

20CRv3 performs well relative to indep. upper air obs

Z850 Z500 Z300

overconfident

underconfident
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Difference between observed and analyzed values, as function of 20CRv3 ensemble spread; 1943-2015

Slivinski et. al. (2021) 
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20CRv3 correlates well with other reanalyses, and can 
“predict” that correlation

Slivinski et. al. (2021) 

Geopot. height anomaly correlation between JRA-55 and 20CRv3
1958-1978 1979-2015

Z500

Z300

(Similar results for 
20CRv3/ERA5)



• Inflation: prevents “ensemble collapse” by artificially spreading out 
ensemble members.
• Simple example: multiplying the ensemble covariance by a predefined (often 

tuned) factor larger than 1

• Localization: prevents an observation from incrementing the state at 
unreasonably long distances.
• Simple example: Gaspari-Cohn localization, a function applied to the 

background covariance matrix which smoothly tapers long-distance 
correlations to zero

Like any EnKF, this system will suffer from filter 
divergence and/or spurious long-distance 
correlations without inflation and localization.
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Inflation
• Previous version of reanalysis used pre-defined multiplicative 

inflation factors based on year and location
• Needed larger inflation factors for densely-observed times and 

places; smaller inflation for sparsely-observed times and places

Northern 
Hemisphere

Tropics Southern 
Hemisphere

1851 – 1870 1.01 1.01 1.01
1871 – 1890 1.05 1.01 1.01
1891 – 1920 1.09 1.02 1.01
1921 – 1950 1.12 1.03 1.02
1951 – 2012 1.12 1.07 1.07



Northern 
Hemisphere

Tropics Southern 
Hemisphere

1851 – 1870 1.01 1.01 1.01
1871 – 1890 1.05 1.01 1.01
1891 – 1920 1.09 1.02 1.01
1921 – 1950 1.12 1.03 1.02
1951 – 2012 1.12 1.07 1.07

Simple adaptive inflation

• Unrealistic signals in uncertainty
• Inhibits accurate studies of 

significance of long-term trends

Atmospheric layer temperature anomalies, Northern Hemisphere

old version



• Adaptive inflation: larger inflation when observations are dense, smaller inflation 
when observations are sparse
• Inflation parameter λinf is defined as function of individual gridpoints (x,y) and 

timesteps (t):

σb is background ensemble standard deviation, 
σa is analysis ensemble standard deviation, and 
prelax is a parameter varying from 0 (no inflation) to 1 (inflate fully to prior spread)

New inflation: relaxation-to-prior-spread



New inflation: relaxation-to-prior-spread
1854 1915

1935 2000



New inflation: relaxation-to-prior-spread
1854 1915

1935 2000



Atmospheric layer temperature anomalies, Northern Hemisphere

new version old version

Ø More accurate, consistent estimates of uncertainty
Ø Can make stronger statements about trends

New inflation: relaxation-to-prior-spread



• Inflation: prevents “ensemble collapse” by artificially spreading out 
ensemble members.
• Simple example: multiplying the ensemble covariance by a predefined (often 

tuned) factor larger than 1

• Localization: prevents an observation from incrementing the state at 
unrealistically long distances.
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background covariance matrix which smoothly tapers long-distance 
correlations to zero
• “Long-distance” defined in terms of a localization radius (can be fixed)
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• Hypothesis: for a given single observation, the optimal localization length 
scale is proportional to the reduction of ensemble variance in observation 
space
• In other words, the more a given observation would reduce the analysis 

covariance, the longer localization length it is given.
• Define 𝜌 as the reduction of ensemble covariance in observation space:
   𝜌 = HPaHT/HPbHT = R/(HPbHT+R)

where H is the linearized observation operator, Pa is the analysis ensemble 
covariance, Pb is the background ensemble covariance, and R is the observation 
error covariance
• Small 𝜌 ⟷ large reduction in variance ⟷ useful observation ⇒ larger 

optimal localization radius
• Conversely, 𝜌 close to 1 implies a smaller optimal localization radius

Adaptive localization



Empirically define 

 L = L0(1 - e- (1 - 𝜌)/r)

where
• L is the localization length scale
• L0 is the maximum allowed localization 

length scale
• 𝜌 is the reduction of ensemble variance in 

ob space (prev. slide); 𝜌 ∊ (0,1]
• r is a parameter governing how tight the 

relationship between 𝜌 and L is

Observations are assimilated serially in order 
of increasing 𝜌, and 𝜌 is recomputed after 
each ob is assimilated.

Adaptive localization

𝜌 = reduction in 
ensemble covariance 

localization length scale



Adaptive localization



20CRv2c avg RMS = 34.4424
20CRv2c avg spread = 9.56379
20CRv3 avg RMS = 24.2104
20CRv3 avg spread = 18.7837

20CRv2c RMSE

20CRv2c expected error
20CRv3 RMSE

20CRv3 expected error



500hPa geopotential height analyzed anomalies versus observed 
anomalies from upper-air measurements at Lindenberg, Germany

1905-1917 & 1925-1938 1952-1980 1981-2001

Observed anomaly (m)

An
al

yz
ed

 a
no

m
al

y 
(m

)



Summary
• The 20th Century Reanalysis version 3 reconstructs nearly 200 years of sub-daily, 

global weather history by assimilating only surface pressure observations
• Reliable confidence and uncertainty estimates provided by 80 ensemble 

members in EnKF
• Updated inflation algorithm (relaxation-to-prior-spread) yields more consistent 

estimates of uncertainty
• Adaptively-varying localization makes observation-thinning unnecessary; more 

observations can be assimilated
• Overall, the 20CRv3 system includes many improvements over the previous 

20CRv2c, leading to improved performance of the dataset (Slivinski et al 2019)
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