# Supermodeling for improving the representation of climate variability

*François Counillon*<sup>1,2</sup>,*Noel Keenlyside*<sup>1,2</sup>, Shuo Wang<sup>1</sup>, *Shunya Koseki*<sup>1</sup>, *Alok Kumar Gupta*<sup>3</sup>, Marion Desvilliers<sup>1,4</sup>, *Maolin Shen*<sup>1</sup>, Francine Schevenhoven<sup>1</sup>

- 1. Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
- 2. Nansen Environmental and Remote Sensing Centre and Bjerknes Centre for Climate Research, Bergen, Norway
- 3. NORCE Norwegian Research Centre AS and Bjerknes Centre for Climate Research, Bergen, Norway
- 4. DMI



## Bias is often larger than the signal we analyze or predict





# **Standard modelling**

### A standard approach to handle such bias is to take the multi-model mean, but

- It does not correct non-linear responses (e.g., climate sensitivity)
- Challenging to assess internal variability

#### Parameter estimation can effectively reduce bias, but:

- Parameters are not necessarily continuous
- Hard to disentangle bias origin in a coupled system
- We can train climate sensitivity but what is the independent validation period

#### Standard modelling



# Supermodelling

The different models are connected as they run :

- As models synchronise, internal variability of the multi-model mean is preserved
- Model diversity is used to train a better climate model







# An example with L63

|         | σ     | ρ  | β   |
|---------|-------|----|-----|
| Truth   | 10    | 28 | 8/3 |
| Model 1 | 13.25 | 19 | 3.5 |
| Model 2 | 7     | 18 | 3.7 |
| Model 3 | 6.5   | 38 | 1.7 |

 $\dot{x} = \sigma(y - x)$  $\dot{y} = x(\rho - z) - y$  $\dot{z} = xy - \beta z$ 

A super model add connections to the other imperfect models

Example:

$$\dot{x_1} = \sigma_1(y_1 - x_1) + C_{12}^x(x_2 - x_1) + C_{13}^x(x_3 - x_1)$$

Nudging to other models

In training phase: use observations to estimate the nudging coefficients (and constrain the state during)

In verification phase: coefficients are frozen and the system can be used as a new dynamical system







## **Supermodel verification**

model1

model2

model 3

20

Truth



- All models have corrected the bias •
- Internal variability is in line with the ٠ truth

Van den Berge et al. 2011

# Supermodelling

Supermodels are demonstrated with idealised models, but their application to climate models is challenging because they **do not share the same state space**, grid and resolution

Can data assimilation provide a framework to handle this challenge ?

# An ocean connected super-ESM with DA

| Model version | Ocean          | atmosphere              |
|---------------|----------------|-------------------------|
| NorESM1-ME    | MICOM(σ; 1°)   | CAM4 (finite-volume, 2° |
| CESM1.1.2     | POP2 (z, 1°)   | CAM5 (finite-volume, 1° |
| MPI-ESM1-LR   | MPIOM (z,1.5°) | ECHAM6 (spectral, 2°)   |



#### **Recursive approach:**

- 1. models are propagated for 1 month
- 2. Generate pseudo-observations (from SST; *i.e.*, weighted mean)
- 3. Assimilate the pseudo-observations back into each model (correct the full ocean state) with the Ensemble Optimal Interpolation

11 nodes 1408 CPU, ~10 model-year per day (on BullSequana XH2000)

# **Can synchronisation be achieved ?**

We compare the performance of different approaches for 1980-2006:

- 1. A posteriori averaging of non-interactive models (NI)
- 2. Supermodel with equal weight (EW)
- 3. Supermodel where all models are attracted to a single model (SINGLE)

# ENSO variability (NINO 3.4)



- Internal variability in the Nino 3.4 seems well synchronised.
- Is internal variability damped?

# Synchronisation and damping metrics

If we decompose the model as the sum of the muli-model mean and anomaly

$$\mathbf{x}_{i}^{j} = \mathbf{x}_{i}^{s} + \mathbf{a}_{i}^{j}, \qquad \text{its time variability is :} \qquad \sigma_{j}^{2} = \sigma_{s}^{2} + \sigma_{aj}^{2},$$

$$\delta^2 = \frac{\sigma_s^2}{\frac{1}{N_s} \sum_{j=1}^{N_s} \sigma_{aj}^2}$$

Quantifies how well the multi-model are synchronized =1/(N-1) for a random process

$$\lambda^2 = \frac{\frac{1}{N_s} \sum_{i=1}^{N_s} \sigma_j^2}{\sigma_s^2}$$

Quantifies whether the time standard deviation is damped (=1 mean no damping)

## SST synchronization and damping







- Tropical Pacific is well-connected (also Nordic Seas)
- Damping in the variability of the ensemble mean is reduced •

Synchronisation with partial synchronisation 2D pdf of synchronisation and damping



Damping is reduced where synchronization is achieved The damping also affects variability of the individual models in EW !

# Synchronization in ocean interior and atmosphere

NI

EW

#### **SINGLE**



#### Synchronization is multivariate

# **Supermodel with simple training**

- Supermodel with spatially and monthly varying trained weight (TW).
- Weights (positive and normalized) are estimated offline from individual model SST biases (1980-2005)

$$w_i \propto \exp\left(-\frac{1}{2}(\mathbf{H}\mathbf{x}_i - \mathbf{d})^{\mathrm{T}}\mathbf{R}^{-1}(\mathbf{H}\mathbf{x}_i - \mathbf{d})\right),$$

#### We verify the performance of the bias for the period 2006 -2021 compared to NI

### Multi-model mean SST bias (2006-2021)

1.5

1

0.5

0

-0.5

-1

-1.5



Ν

#### Supermodelling reduces SST model biases





## Annual-mean precipitation climatology in the tropical Pacific



It mitigates the double ITCZ problem !

Schevenhoven et al. sub

## Summary

- A supermodel based on 3 ESMs is connected by ocean assimilation
- Monthly synchronisation (via SST) can achieve partial synchronisation
- Weighted mean supermodel causes damping of variability under partial synchronisation
- Supermodel reduces SST and precipitation biases where synchronization is achieved
- Improvements greater than the standard ensemble mean, because of nonlinear properties of the climate system
- Atmospheric synchronisation is ongoing
- Counillon, F et al. . Framework for an ocean-connected supermodel of the Earth System, JAMES 2023
- Schevenhoven, F., et al. . Supermodeling: improving predictions with an ensemble of interacting models, submitted to BAMS

# **Atmosphere connection**





- We test atmospheric connection using nudging
- Run CAM4-CAM5 connected every 6 hours

Schevenhoven et al. in prep

# **Future steps**

- Test the added value for prediction
- Improve synchronization by increasing the frequency of synchronization steps and synchronising other components (atmosphere, ice, land, ...)
- Handle the damping issue by adding a surrogate model in the pseudoobservation of the unsynchronised processes
- Use supermodel for downscaling (synchronisation between outer and inner model)
- Can we connect the models via the cloud ?

- Van den Berge, L.A., Selten, F.M., Wiegerinck, W.A.J.J. and Duane, G.S., 2011. A multi-model ensemble method that combines imperfect models through learning. Earth System Dynamics, 2(1), pp.161-177.
- Counillon, F., et al. "Framework for an Ocean-Connected Supermodel of the Earth System." *Journal of Advances in Modeling Earth Systems* 15.3 (2023): e2022MS003310.
- Schevenhoven, F., Keenlyside, N., Carrassi, A., Counillon, F., Devilliers, M., Koseki, S., Duane, G. (submitted). Supermodeling: improving predictions with an ensemble of interacting models. BAMS.