Regional assimilations and coupling efforts to inform model errors, predictability, and sensitivities.

Workshop: Improving climate models and projections using observation MIT, 12-14 June 2023

Matt Mazloff, Ariane Verdy, Rui Sun, Bia Villas Bôas, Aneesh Subramanian, Bruce Cornuelle, Ibrahim Hoteit, and more



# Motivations: improve forecasts and quantify their uncertainty. Approach: identify and understand model errors using state estimation.

- Observations are compared to state estimates to generate realizations of errors.
- Example: using assimilation to remove model parameterization biases

Adjoint-Based Estimation of Eddy-Induced Tracer Mixing Parameters in the Global Ocean. Liu, Köhl, Stammer. 2012



FIG. 1. Gradients of the total cost function with respect to  $k_{\rm gm}$  (10<sup>-2</sup> s m<sup>-2</sup>) at 310 m from (a) the modified adjoint and (b) the original adjoint to the GM parameterization.

### **Error Identification**

- Have incomplete observations
- Possible approach:
  - Guess the structure
  - Make a model for it with free parameters
  - Fit parameters using DA
  - Evaluate the fit
  - Discard or improve the model
  - Repeat

#### Error can be from:

- Initial condition errors due to observational/engineering/mapping
- Amplification of initial condition errors by flow instabilities
- Earth system model approximations and parameterizations

## Example: using assimilation to remove bias in data



Geoid commission error on height anomalies [cm] implied by EGM2008 (Pavlis et al., 2012) Example: using assimilation to remove bias in data Regional state estimation to determine dynamic ocean topography (DOT)

#### Error can be from:

- Initial condition errors due to observational/engineering/mapping
- Amplification of initial condition errors by flow instabilities
- Earth system model approximations and parameterizations

Hypothesis: we can solve for DOT and the geoid error simultaneously using the adjoint method to minimize J = (SSH – DOT – (geoid + F))<sup>-2</sup> The California Current System state estimate (Iteration 186). It is available for 2007 – 2010 at http://sose.ucsd.edu/CASE. The 2000m bathymetric contour and CalCOFI line 75 in white.



## Objectively mapped geoid correction field in cm :

Time mean residual to Jason 1 & 2: < r > = < SSH - DOT - EGM2008 >



#### **Tested correction field:**

- Cannot be explained by circulation errors (i.e. model errors)
- Reduced residual to
  AVISO (ie an
  - alternative DOT estimate)
    - Reduced residuals with independent altimeters and Jason at different times

Improving the geoid: Combining altimetry and mean dynamic topography in the California coastal ocean Mazloff et al 2014

## **Error Identification**

- Have incomplete observations
- Possible approach:
  - Guess the structure
  - Make a model for it with free parameters
  - Fit parameters using DA
  - Evaluate the fit
  - Discard or improve the model
  - Repeat

#### Error can be from:

- Initial condition errors due to observational/engineering/mapping
- Amplification of initial condition errors by flow instabilities
- Earth system model approximations and parameterizations

**Hypothesis:** we can solve for DOT and the error simultaneously using the adjoint method to minimize  $J = (SSH - DOT - (geoid + F))^{-2}$ 



and remove bias in data

### Sources of error

- Forecast errors due to amplification of IC errors by flow instabilities.
- What skill can be achieved for what lead times?
- May be addressed by increasing or reallocating observations, which requires understanding their structure. What and where to observe to maximize predictability?
- Can we control/damp the chaotic behavior and then parameterize the impact?
- Can we derive a nudging in the form of a parameterization of the chaotic processes?

Investigating Predictability of DIC and SST in the Argentine Basin Through Wind Stress Perturbation Experiments Swierczek et al, 2021



#### Sources of error: Forecast errors due to amplification of IC errors by flow instabilities.



Sources of error: Forecast errors due to amplification of IC errors by flow instabilities.



#### Sources of error: Forecast errors due to amplification of IC errors by flow instabilities.



- The 1/3 is more predictable.
- But the 1/3° model response is only consistent with the 1/12° model for about 8 days calling into question the potential predictive skill of the coarser model at longer lead times.

#### Can we derive a nudging in the form of a parameterization of the chaotic processes?

### sources of error

- Forecast errors due to model errors from approximations and parameterizations.
  - We have an idea of where to look for these errors: boundary layers.
  - Located at fronts, topography, interfaces (especially air/sea/ice), other places?

**Example opportunity:** The EquatorMix process study occurred Oct 6 to Nov 3, 2012 while a tropical instability wave past through.

Observations: Fast-CTD, Doppler Sonar, Extended meteorological sensors from UAVs What are the processes important for upwelling and how well can we model them?





#### Can we reproduce the evolving T, S, and flux observations from EquatorMix?



Workplan: assimilate these data in both a 1/6 large domain TPOSE, and in a nested 1/24 domain.



#### Can we reproduce the evolving T, S, and flux observations from EquatorMix?



0040

## Regional MITgcm-WRF-WW3

- We are developing a regional coupled modeling and assimilation system that will include both strongly and weakly coupled ocean-atmosphere state estimation with EAKF and weakly coupled with 4DVar.
- Why develop a new model? Assimilation, process experiment needs, control over the development, a focus on processes (eg ocean surface wave effects.)



### Power of coupled framework for validation

- Sea ice area is well observed and integrates fluxes
- S2S forecasts grow Southern Hemisphere sea ice too rapidly



We tried *many* perturbation experiments in our coupled model. Two ways to bring sea ice growth rate into consistency with obs:

- Change the bulk grid cell temperature when ice freezes
- Increase downward longwave (DLW) 2. radiation by ~50 Wm<sup>-2</sup>
- Obs can inform error causal mechanisms & show reanalysis do underestimate DLW

Cerovečki et al 2022 ERL



ECMWF

## Papers using our regional SKRIPS model

#### Polar work:

н.

- Conservation of heat and mass in P-SKRIPS version 1: the coupled atmosphere-ice-ocean model of the Ross Sea.
- Impact of downward longwave radiative deficits on Antarctic sea-ice extent predictability during the sea ice growth period
- Surface waves:
  - Waves in SKRIPS: WaveWatch III coupling implementation and a case study of cyclone Mekunu
  - Focusing and defocusing of tropical cyclone generated waves by ocean current refraction
- Coupled forecasting:
  - The role of air-sea interactions in atmospheric rivers: Case studies using the SKRIPS regional coupled model
  - SKRIPS v1. 0: a regional coupled ocean-atmosphere modeling framework (MITgcm-WRF) using ESMF/NUOPC, description and preliminary results for the Red Sea
- Assimilation papers in development, including BGC assimilation

BGC-Argo is rapidly expanding, and beginning to provide sufficient coverage of in situ observations to justify a DA effort. The carbon observing system is becoming mature!



Generated by ocean-ops.org, 2023-06-01 Projection: Plate Carree (-150,0000)



#### **BGC model component is relatively computationally expensive** Adding N-BLING (evolved from Glabraith et al. 2010) adds 9 prognostic tracers



All prognostic and diagnostic variables are estimated. Can be constrained to observations, and this information can propagate through the system via DA

#### But there is great cause for optimism in BGC assimilation:

- BGC DA works very well! Minimal increase to the overall nonlinearity of the system.
- BGC is a strong constraint on the physical system, so great added value to ESM!

### Discussion

- Errors come from model inputs (e.g. ICs), which may be be amplified by flow instabilities, and from the model approximations and parameterizations
- Assimilation should be a good way to find errors, but the model error covariance is the key problem hindering identification of error sources.
- Short-term regional assimilation allows high resolution and may be a useful tool for identifying errors and studying how to mitigate or resolve them.
- Regional process experiments can inform climate model parameterizations, and lead to new stochastic parameterizations based on the observed physics.
- We are working on regional process experiments using the DA as a data analysis tool for testing new ideas, formulating parameterizations and transport models and estimating the parameters.
- Can we control/damp the chaotic behavior and then parameterize the impact?