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Identifying dominant atmospheric drivers of ocean variability 

using ECCO and the MITgcm adjoint: 

Implications for reducing model bias




What are the dominant 
patterns and pathways 
by which the atmosphere 
drives ocean variability?




Outline

The ocean as an integrator (and source) of random variation 
What dominates ocean variability? Views from the atmosphere and ocean

Reconciliation: A dynamics-weighted principal components analysis

Dominant atmospheric drivers of decadal AMOC variability

Impacts of dominant drivers over the observational period

Tracing pathways of decadal AMOC change from atmosphere to ocean




Case study: Variability in the Atlantic Meridional 
Overturning Circulation

Decadal variability in AMOC influences climate 
variability

Can mask anthropogenic warming signal

Junction between high-frequency (e.g. wind) 
and low-frequency (e.g. buoyancy) influences

Jackson et al. 2022



Observing AMOC variability

Frajka-Williams et al. 2016



Xamoc = Xτ + Xb + …

var (Xamoc) = var (Xτ) + var (Xb) + 2cov (Xb, Xτ) + …

Moat et al. 2020

Representing AMOC variability as a random process



Wunsch and Heimback 2013

Representing AMOC variability as a random process
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The leading EOF 
answers the question:


What atmospheric 
pattern accounts for 
the greatest fraction 
of total atmospheric 
variance?
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Concatenate your favorite

atmospheric variable

into a data matrix…

The leading EOF of 
wind stress in the ECCO 
v4r4 state estimate.



An ocean perspective:


What atmospheric 
pattern would most 
efficiently excite 
ocean variability?



AMOC strength

@ 26N in January

s =
∂x
∂u

Ocean model adjoint sensitivities diagnose dominant drivers

Zonal wind stress


Pillar et al. 2016 
Also Heimbach and Wunsch 2011; Jones et al. 2018; 
Kostov et al. 2019, 2021; Fukumori et al. 2021; Stephenson 
and Sevellec 2020, 2021



AMOC strength

@ 26N in January

s =
∂x
∂u

Ocean model adjoint sensitivities diagnose dominant drivers

Pillar et al. 2016 
Also Heimbach and Wunsch 2011; Jones et al. 2018; 
Kostov et al. 2019, 2021; Fukumori et al. 2021; Stephenson 
and Sevellec 2020, 2021

Zonal wind stress
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The leading stochastic 
optimal.  

Farrell and Ioannou 
1993, 1996; Kleeman 
and Moore, 1997
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s(τ1) s(τ2) s(τ3) s(τL)

 for wind stress in 
ECCO v4r4
v1

What atmospheric 
pattern would most 
efficiently excite 
ocean variability? l1 l2 lR

v1 v2 vR

≈



What the ocean “wants” What the ocean “gets”

An interpretive quandary
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What the ocean “wants” What the ocean “gets”

An interpretive quandary

Is the leading EOF the leading driver of variability in this ocean quantity?

Is the leading stochastic optimal really the most important mechanism for changing the ocean?
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The math slide! Deriving dynamics-weighted principal components

δx(t) ≈
Nτ

∑
i=1

s(τi)⊤δu(t − τi)

s =
∂x
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σ2
Σ = ⟨(δx(t))2⟩

Definition of adjoint sensitivity

The variance of the quantity of interest

To change AMOC strength, we

can make a control change δu



The math slide! Deriving dynamics-weighted principal components

= tr(CZ)

…but is simplified by two 
assumptions (see also Kleeman 
and Moore, 1997):

1. Flux covariances are 
separable in space and time

2. Sensitivities are stationary


Atmospheric 
spatial covariance

δx(t) ≈
Nτ

∑
i=1

s(τi)⊤δu(t − τi)

s =
∂x
∂u

σ2
Σ = ⟨(δx(t))2⟩

=
Nτ

∑
i=1

Nτ

∑
j=1

s(τi)⊤⟨δu(t − τi)δu⊤(t − τj)⟩ s(τj)

Z = SS⊤

Definition of adjoint sensitivity

The variance of the quantity of interest

Substitution gets a bit sticky…

To change AMOC strength, we

can make a control change δu



The math slide! Deriving dynamics-weighted principal components

U = ∑ pkt⊤
k

σ2
Σ = ∑ σ2

k

σ2
Σ = tr(CZ)

Our requirements:

1. An EOF-like decomposition

2. Contributions to ocean variance

      that add (no cross terms)
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The math slide! Deriving dynamics-weighted principal components

U = ∑ pkt⊤
k

σ2
Σ = ∑ σ2

k

P = UT
S⊤U = LΓT⊤

σ2
Σ = tr(CZ)

…yields an SVD optimization problem! 
Amounts to computing principal components 
weighted by adjoint sensitivities.

EOF-like, but singular values are ocean QoI 
variance rather than atmospheric variance.

Patterns are orthogonal in time, but not space.

Recovers EOFs and SOs for limit cases.

AKA “balanced truncation”: Moore (1981); 
Farrell and Ioannou (2001); Moore et al. (2022)

Our requirements:

1. An EOF-like decomposition

2. Contributions to ocean variance

      that add (no cross terms)

Spatial patterns ranked 
by their contribution to 

ocean QoI variance

Contributions to QoI variance



Demonstration in a (very) simple system

Consider a 1-dimensional system with 
stochastic forcing that is smooth in space 
and Gaussian white noise in time.



Demonstration in a (very) simple system

Consider a 1-dimensional system with 
stochastic forcing that is smooth in space 
and Gaussian white noise in time.

..and adjoint sensitivities of a hypothetical 
ocean QoI that have shorter length 
scales and are localized in space.



Demonstration in a (very) simple system

∼
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Demonstration in a (very) simple system

WPC patterns outperform EOFs at driving QoI variance.
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ECCO: Forget et al. 2015; CNYF: Large and Yeager 2009 

~1° resolution, flux-forced MITgcm ECCO v4 
configuration 
Ocean and sea ice components spun up under 
4800 years following Wolfe et al. (2017). 

Adjointed and run to compute sensitivities of 
AMOC transport at climatological maximum depth 
at decadal averages across several latitudes.


Fluxes are 6 hourly from ECCO v4r4.


https://www.degreesymbol.net/


What are the dominant atmospheric patterns 

responsible for surface-forced decadal AMOC variability?

Heat flux patterns (four latitudes):
Leading pattern is almost identical at 
all four latitudes (>99% agreement)




What are the dominant atmospheric patterns 

responsible for surface-forced decadal AMOC variability?

Leading pattern is almost identical at 
all four latitudes (>99% agreement)


Structurally different from leading EOF 
pattern


… but highly similar to the heat flux 
signature of NAO (>90% agreement)

HF EOF1

Heat flux patterns (four latitudes):



What are the dominant atmospheric patterns 

responsible for surface-forced decadal AMOC variability?

Leading WPC patterns (four latitudes):



What are the dominant atmospheric patterns 

responsible for surface-forced decadal AMOC variability?

Substantially different between AMOC latitudes but can be >99% 
explained by a subpolar pattern (1) and a subtropical pattern (2)

Qualitative similarities to the NAO and EAP:

Leading WPC patterns (four latitudes):
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ECCO is a forward run of the 
MITgcm that conserves 
ocean properties.


…so we can make changes 
to the forcing and rerun the 
MITgcm to evaluate impacts 
and mechanisms of 
atmospheric forcings.

Using ECCO as a climate sandbox
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1. Omit a leading WPC pattern



How much AMOC variability do these patterns explain?

Up to 90% change in variance at the decadal time scale (vs. <30% with the first EOF)

NB: this is in the full nonlinear model (not tangent linear)

25°N 35°N 45°N 55°N



How much AMOC variability do these patterns explain?
25°N 35°N 45°N 55°N
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The final product is a forward 
run of the MITgcm that 
conserves ocean properties.


…so we can make changes 
to the forcing and rerun the 
MITgcm to evaluate impacts 
and mechanisms of 
atmospheric forcings.

Using ECCO as a climate sandbox
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How are low-frequency AMOC anomalies established?
PERTURBATION

HEAT FLUX

DWBC ADVECTION

GS/NAC ADVECTION

time
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How are low-frequency AMOC anomalies established?
PERTURBATION

GS/NAC ADVECTION

ROSSBY WAVES

WIND STRESS

PATTERN 2



Conclusions and future work 
Adjoints tell us what the ocean “wants” from the atmosphere. 
Atmospheric EOFs describe dominant atmospheric patterns. 
By combining adjoints and atmospheric statistics, we identify 
atmospheric structures that dominate ocean variability. 

When applied to AMOC on annual- and decadal-average time 
scales, a common NAO-like heat flux pattern dominates variance 
change across time scales and latitudes by reducing density 
anomaly amplitudes in the SPG.


Corresponding wind patterns vary between latitudes, but have EAP-
like (subtropics) and NAO-like (subpolar) components.

Removing these patterns reduces AMOC variability at decadal time-
scales by up to 90% through a combination of slow responses. 

Caveats: It’s a model(!) Using a 1°, ocean-only, flux-forced model. 
No guarantee of significance of atmospheric modes. We ignore 
nonstationarities in fluxes and adjoint sensitivities (for now). 

Papers:

Amrhein et al. (methods),


subm. J Clim


 Stephenson et al. 
(AMOC results), in prep

https://www.degreesymbol.net/


Conclusions and future work 

Investigating MITgcm adjoint sensitivities

in CMIP6 coupled models — a path for

quantifying structural uncertainties?




Integration of CESM and the Data Assimilation Research Testbed

CAM6 reanalysis | Global 1°, 80 ensemble members, 
2011-2020. Publicly available for forcing CESM.

High-resolution ocean DA | 80-member ocean 
reanalyses spanning 2011-2017 at 1° and 0.1°

DA and parameter estimation in CLM to improve 
carbon cycle, hydrologic, and atmospheric forecasting 

DA tailored to “bounded” climate quantities (sea ice 
concentration, tracer concentrations, parameters…)

DA and parameter estimation in MOM6/MARBL

A workhorse DA compset for coupled climate data 
assimilation in CESM3 with DART
Dan Amrhein, Alper Altuntas, Helen Kershaw, Kevin 
Raeder, Jim Edwards
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https://www.degreesymbol.net/


Other things / what’s next:  
Cross-attractor transforms (CATs) 
with Ian Grooms and Niraj Agarwal (CU)
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