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What are the dominant
patterns and pathways
by which the atmosphere
drives ocean variability?



Outline

The ocean as an integrator (and source) of random variation

What dominates ocean variability? Views from the atmosphere and ocean
Reconciliation: A dynamics-weighted principal components analysis
Dominant atmospheric drivers of decadal AMOC variability

Impacts of dominant drivers over the observational period

Tracing pathways of decadal AMOC change from atmosphere to ocean



Case study: Variability in the Atlantic Meridional
Overturning Circulation

Decadal variability in AMOC influences climate
variability

Can mask anthropogenic warming signal

Junction between high-frequency (e.g. wind)
and low-frequency (e.g. buoyancy) influences

a Subpolar gyre

Relative importance

b Subtropical gyre

Relative importance

— Internal wind — Internal buoyancy — External
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Jackson et al. 2022



Observing AMOC variability
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Representing AMOC variability as a random process

a0 a) AMOC 10-day binned

N
-
|

-
o
|

Transport (Sv)

O I I I I I I I
2004 2006 2008 2010 2012 2014 2016 2018

Xamoc =XT+XI9+

var (Xamoc) = var (X,) + var (X,) + 2cov (X,, X,) + ...

Moat et al. 2020



Representing AMOC variability as a random process

The zero-order result here 1s that a modern ocean-ice
GCM, when least squares fit to the 2-decade-long global
datasets available since 1992, produces a dynamically
consistent estimate of the Atlantic MOC, one which i1s
indistinguishable from a stationary Gaussian red-noise

Wunsch and Heimback 2013
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The leading EOF
answers the guestion:

What atmospheric
pattern accounts for
the greatest fraction
of total atmospheric
variance?
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The leading EOF
answers the guestion:

What atmospheric
pattern accounts for
the greatest fraction
of total atmospheric
variance?
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An ocean perspective:

What atmospheric
pattern would most
efficiently excite
ocean variability?



Ocean model adjoint sensitivities diagnose dominant drivers
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Also Heimbach and Wunsch 2011; Jones et al. 2018;
Kostov et al. 2019, 2021; Fukumori et al. 2021; Stephenson
and Sevellec 2020, 2021
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An interpretive quandary

What the ocean “wants” What the ocean “gets”
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An interpretive quandary

What the ocean “wants” What the ocean “gets
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Is the leading EOF the leading driver of variability in this ocean quantity?
Is the leading stochastic optimal really the most important mechanism for changing the ocean?
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The math slide! Deriving dynamics-weighted principal components

ox
S = — Definition of adjoint sensitivity
ou
N, . To change AMOC strength, we
0x(1) &~ Z s(z;) ou(t — 7)) can make a control change du
=1
2
g% — < (5x(t)) > The variance of the quantity of interest
NT NT
_ Z Z S(Ti)T<5u(t B Tl-)éuT(t o T])> S(z}) Substitution gets a bit sticky...
=1 =1 ..but is simplified by two
assumptions (see also Kleeman
= tr(CZ) and Moore, 1997):

T .
Z =SS 1. Flux covariances are
separable in space and time

2. Sensitivities are stationary

Atmospheric
spatial covariance



The math slide! Deriving dynamics-weighted principal components
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The math slide! Deriving dynamics-weighted principal components

2
oy = tr(CZ)
Kb ur requirements:
1. An EOF-like decomposition
, , 2. Contributions to ocean variance
O5 = Z o that add (no cross terms)

...yields an SVD optimization problem!
Contributions to Qol variance

/ Amounts to computing principal components
STU —ILITT weighted by adjoint sensitivities.
EOF-like, but singular values are ocean Qol
P=UT variance rather than atmospheric variance.
T Patterns are orthogonal in time, but not space.
Sbsef(ﬂzlirpj;tﬁ:?:u;?::fg Recovers EOFs and SOs for limit cases.
ocean Qol variance AKA “balanced truncation”: Moore (1981);

Farrell and loannou (2001); Moore et al. (2022)
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Demonstration in a (very) simple system

Leading EOFs of flux variability
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ECCOv4r4 production run
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~1° resolution, flux-forced MITgcm ECCO v4 =3 0 *;'
configuration g, =
Ocean and sea ice components spun up under
4800 years following Wolfe et al. (2017). >

y 9 (2017) el

Adjointed and run to compute sensitivities of ECCOv4 with CORE NYF

AMOC transport at climatological maximum depth T 20
at decadal averages across several latitudes. 1 o
Fluxes are 6 hourly from ECCO v4r4.
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ECCO: Forget et al. 2015; CNYF: Large and Yeager 2009
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What are the dominant atmospheric patterns
responsible for surface-forced decadal AMOC variability?

Heat flux patterns (four latitudes):

25°N __35°N Leading pattern is almost identical at
‘ all four latitudes (>99% agreement)
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What are the dominant atmospheric patterns
responsible for surface-forced decadal AMOC variability?

Heat flux patterns (four latitudes):
25°N __ 35°N Leading pattern is almost identical at
' all four latitudes (>99% agreement)

Structurally different from leading EOF
pattern

... but highly similar to the heat flux
signature of NAO (>90% agreement)

- 0.00
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-—0.02

Heat flux (dimensionless)




What are the dominant atmospheric patterns
responsible for surface-forced decadal AMOC variability?

Leading WPC patterns (four latitudes):
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What are the dominant atmospheric patterns
responsible for surface-forced decadal AMOC variability?

Substantially different between AMOC latitudes but can be >99%
explained by a subpolar pattern (1) and a subtropical pattern (2)
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v ||0020
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Leading WPC patterns (four latitudes):

Pattern 1 (42.4%) Pattern 2 (57.0%)
= v({'\_" 3 N v‘_(-\'. p

0.025

Wind stress (dimensionless)

- 0.005

0.020

—-0.000

- 0.015

- 0.010

~EAP

- 0.005

Wind stress (dimensionless)

0.000




Outline

The ocean as an integrator (and source) of random variation

What dominates ocean variability? Views from the atmosphere and ocean
Reconciliation: A dynamics-weighted principal components analysis
Dominant atmospheric drivers of decadal AMOC variability

Impacts of dominant drivers over the observational period

Tracing pathways of decadal AMOC change from atmosphere to ocean



Using ECCO as a climate sandbox

1. Omit a leading WPC pattern
ECCO is a forward run of the

MITgcm that conserves @ (, N t -
ocean properties. D U R
e
- 1 P> Pr
...S0 we can make changes Time

to the forcing and rerun the
MITgcm to evaluate impacts
and mechanisms of
atmospheric forcings.




latitude

How much AMOC variability do these patterns explain?
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Using ECCO as a climate sandbox

The final product is a forward
run of the MITgcm that
conserves ocean properties.

...S0 we can make changes
to the forcing and rerun the
MITgcm to evaluate impacts
and mechanisms of
atmospheric forcings.

2. Perturb model forcings with the WPC pattern
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How are low-frequency AMOC anomalies established”?
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Conclusions and future work

Adjoints tell us what the ocean “wants” from the atmosphere.
Atmospheric EOFs describe dominant atmospheric patterns.
By combining adjoints and atmospheric statistics, we identify
atmospheric structures that dominate ocean variability.

When applied to AMOC on annual- and decadal-average time
scales, a common NAO-like heat flux pattern dominates variance
change across time scales and latitudes by reducing density
anomaly amplitudes in the SPG.

Corresponding wind patterns vary between latitudes, but have EAP-
like (subtropics) and NAO-like (subpolar) components.

Removing these patterns reduces AMOC variability at decadal time-
scales by up to 90% through a combination of slow responses.

Caveats: It's a model(!) Using a 1°, ocean-only, flux-forced model.
No guarantee of significance of atmospheric modes. We ignore
nonstationarities in fluxes and adjoint sensitivities (for now).

-0.00

Papers:
Amrhein et al. (methods),
subm. J Clim

Stephenson et al.
(AMOC results), in prep
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Conclusions and future work

Investigating MITgcm adjoint sensitivities
in CMIP6 coupled models — a path for
quantifying structural uncertainties?
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Integration of CESM and the Data Assimilation Research Testbed

A workhorse DA compset for coupled climate data
assimilation in CESM3 with DART

Dan Amrhein, Alper Altuntas, Helen Kershaw, Kevin
Raeder, Jim Edwards




Conclusions and future work

Adjoints tell us what the ocean “wants” from the atmosphere.
Atmospheric EOFs describe dominant atmospheric patterns.
By combining adjoints and atmospheric statistics, we identify
atmospheric structures that dominate ocean variability.

When applied to AMOC on annual- and decadal-average time
scales, a common NAO-like heat flux pattern dominates variance
change across time scales and latitudes by reducing density
anomaly amplitudes in the SPG.

Corresponding wind patterns vary between latitudes, but have EAP-
like (subtropics) and NAO-like (subpolar) components.

Removing these patterns reduces AMOC variability at decadal time-
scales by up to 90% through a combination of slow responses.

Caveats: It's a model(!) Using a 1°, ocean-only, flux-forced model.
No guarantee of significance of atmospheric modes. We ignore
nonstationarities in fluxes and adjoint sensitivities (for now).
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with lan Grooms and Niraj Agarwal (CU)
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Other things / what’s next:

Cross-attractor transforms (CATS)
with lan Grooms and Niraj Agarwal (CU)
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Conclusions and future work

Adjoints tell us what the ocean “wants” from the atmosphere.
Atmospheric EOFs describe dominant atmospheric patterns.
By combining adjoints and atmospheric statistics, we identify
atmospheric structures that dominate ocean variability.

When applied to AMOC on annual- and decadal-average time
scales, a common NAO-like heat flux pattern dominates variance
change across time scales and latitudes by reducing density
anomaly amplitudes in the SPG.

Corresponding wind patterns vary between latitudes, but have EAP-
like (subtropics) and NAO-like (subpolar) components.

Removing these patterns reduces AMOC variability at decadal time-
scales by up to 90% through a combination of slow responses.

Caveats: It's a model(!) Using a 1°, ocean-only, flux-forced model.
No guarantee of significance of atmospheric modes. We ignore
nonstationarities in fluxes and adjoint sensitivities (for now).
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