
Challenges and opportunities for effective storage and
dissemination of Earth System model outputs

Alexey N. Shiklomanov
NASA Goddard Space Flight Center

Outline

(1) NASA is moving its Earth Science data into the commercial cloud. Why?
What does mean for you?

(2) What do we need to do differently with data in the cloud? What does it
really mean for data to be “cloud-optimized”?

(3) How do we get more people to use Earth System model data?

~11,000 datasets from ~1000 instruments totaling ~62 PB of data

NASA’s Distributed Active Archive Centers (DAACs):
A federated approach to data management

Physical Oceanography
DAAC

Gravity, Sea surface Temperature,
Ocean Winds, Topography, circulation
and currents

Alaska Satellite Facility
DAAC

SAR Products, Sea Ice, Polar
Processes, Geophysics

National Snow and Ice
Data Center DAAC

Frozen Ground, Glaciers, Ice Sheets,
Sea Ice, Snow, Soil Moisture

Socioeconomic Data and
Applications Center

Human Interactions, Land Use,
Environmental Sustainability,
Geospatial Data

Ocean Biology DAAC

Ocean Biology, Sea Surface
Temperature

Land Process DAAC

Land Cover, Surface Reflectance,
Radiance, Temperature, Topography,
Vegetation Indices

Global Hydrology
Resource Center DAAC

Hazardous Weather, Lightning,
Tropical Cyclones and Storm-induced
Hazards

Crustal Dynamics Data
Information System

Space Geodesy, Solid Earth

Goddard Earth Sciences
Data and Information
Services Center

Global Precipitation, Solar Irradiance,
Atmospheric Composition and
Dynamics, Global Modeling

Level 1 and Atmosphere
Archive and Distribution
System (LAADS)

MODIS Level-1 and Atmosphere Data
Products

Oak Ridge National
Laboratory DAAC

Biogeochemical Dynamics, Ecological
Data, Environmental Processes

LaRC Atmospheric
Science Data Center

Radiation Budget, Clouds, Aerosols,
Tropospheric Chemistry

Challenges facing NASA’s
Earth Data ecosystem

Push for transdisciplinary,
multi-mission science

Dramatic
increases in
data volume
and complexity

Increased
emphasis on
open,
accessible,
and
reproducible
science

GES DISC

Data

Analysis and
visualization

tool

ORNL DAAC

Data

Subset and
transform tool

NSIDC

Data

Mapping
service

What will change?

● It will be easier for DAACs to collaborate and develop
tools that work with more datasets, now that they
always have direct access to each other’s data.

● New options for analyzing data and developing tools “in
place” in the cloud, without needing to download data.

What will stay the same?

● All NASA Earth Science data will continue to be 100% free
and open to public.

● Existing data services (including direct download) will
continue to work without disruption

● On-premise HPC will continue to play an important role in
the NASA computing ecosystem

Analysis and visualization

tool (Giovanni)
Mapping
service

Subset and
transform tool

(SDAT)

Data Data Data

Analysis
in place

Where
we’re
going

Where
we
are

VS

Direct Download
Direct Download

ChallengesMany tools and
workflows that rely
on local hardware
do not work (well) in
the cloud

Planning and
managing
commercial cloud
costs

Diversity of NASA’s
Earth Science data
and users makes it
difficult to
standardize data
catalogs and tools

Working across
different commercial
cloud providers (e.g.,
egress costs)

1

2

3

4

5

Integrating
commercial cloud
and on-prem (HPC)
compute in a secure
and cost-effective
way

Amazon Web Services (AWS) regions

Anyone can launch an AWS service in any region,
from anywhere, regardless of where they are
physically located.

Moving and accessing data within a region is free
and fast. Moving data out of a region is slower and
costs money.

- Requester pays — Data user pays out of their AWS
account

- Provider pays — Data provider pays out of their AWS
account

- Under certain conditions (e.g., AWS Open Data
Registry), AWS will pay storage + egress costs

Putting as much compute and storage as possible
in the same region is essential to minimizing cost
and maximizing performance.

NASA’s Earth Science data archive is in us-west-2
(Oregon). NOAA’s data are currently in us-east-1
(Virginia).

File system vs. network storage

Network-based object storage (e.g., S3)Filesystem storage (HDD, SSD)

Total read time [s] = Latency [s] + (Volume [MB] ÷ Bandwidth [MB/s])
“Time to first byte”

Latency: Low (good)
- <0.1 ms for SSD; 1-10 ms for HDD

Bandwidth: Slow (bad)
- <100 MB/s for HDD; 200-500 MB/s for typical SSD;

5000-7000 MB/s for top-line SSD

Prefer small chunk sizes that can be read using many small
read operations.

Uses file system calls built into operating system (and every
programming language).

Latency: High (bad)
- 100-200 ms; each API call costs (a little) money

($0.0004/1000 requests)

Bandwidth: Fast (good)
- Up to 100,000 MB/s (within-region; out of region,

depends on distance and internet bandwidth)

Prefer larger chunk sizes that minimize the number of
requests. “Cloud-optimized” data formats are ones that
minimize the number of API calls required to read a dataset
through a combination of consolidated, predictably sized
metadata headers and well-thought-out chunking strategy.

Uses HTTP requests (e.g., curl); requires special libraries or
programming language abstractions (e.g., Python fsspec)

“Cloud-optimized” metadata

Bad

Header

Var1 Metadata

Var1 data

Var2 Metadata

Var2 data

Var3 Metadata

Var3 data

1 API call to open the file + 2 API calls per
variable (1 to read the metadata, 1 to read
the data) to read the data.

Good

Header

Var1 Metadata
Var2 Metadata
Var3 Metadata

Var1 data

Var2 data

Var3 data

1 API call to open the file and get
metadata for all variables. Then, only 1
API call per variable to read the data.

Array storage

x

y

t

Optimized for spatial
analysis

Optimized for time
series analysis

Draw a map at t=2

Extract time series at (2,1)

READ RANGE 7:12

READ 2; READ 8; READ 14

Draw a map at t=2

Extract time series at (2,1)

READ 2; READ 5; READ 8; READ 11; READ 14; READ 17

READ RANGE 4:6

Sequential reads are much faster than random reads.

For multi-dimensional datasets, there is a fundamental performance tradeoff in array storage for slicing
along different dimensions.

x

y

t

Chunk size and shape

Draw a map at t=2

Extract time series at (2,1)

In binary formats like NetCDF-4 (HDF5)
and Zarr, chunks are compressed, so it is
impossible to read part of a chunk.

For a given use case, we want to minimize
the number of API calls and minimize the
read volume of unused data.

Again, there is a fundamental trade-off in
chunking strategies for different access
patterns. Download/read this chunk

Discard data point after
reading

Strategy 1

Strategy 2

Strategy 3

Strategy 4

Geospatial data models

Vector-based / tabular

Examples: Row-based plain-text (e.g., CSV);
columnar binary (e.g., Parquet, Feather, FST);
relational database (SQL); point tile

X Y T Var1 Var2

1 1 1 … …

1 2 1 … …

2 1 1 … …

2 2 1 … …

1 1 2 … …

1 2 2 … …

2 1 2 … …

2 2 2 … …

Multi-dimensional, coordinate-based

lat (y)

lon (x)

time (t)

pres (z)

Var1 (lon,lat)
(2D, time-averaged)

Var2
(lon,lat,time)
(2D, time-variant)

Var2
(lon,lat,pres)
(3D, time-averaged)

Examples: NetCDF, Zarr, GRIB(2)

Raster

Unstructured Structured

Dimensions: (x, y)
Affine: [a1 a2 a3 a4 a5 a6]

Latitude = a1 + x*a2 + y*a3
Longitude = a4 + x*a5 + y*a6

Var1[t=1]

Var1[t=2]

Var2

Var2 (x/2,y/2)
(overview 2x)

Examples: GeoTiff, JPEG

Maximum flexibility, but minimal efficiency for
storage and access.

Subsetting requires exhaustive search along all
dimensions.

Sacrifice some flexibility for some efficiency.

Subsetting requires exhaustive search, but
only once along each dimension.

Least flexibility, but most efficiency.

Subsetting can be done analytically using affine
transform.

Overviews (data stored at different zoom levels)
are very useful for dynamic visualization.

HDF5 vs. Zarr
Both formats fill the same niche: Binary, compressed, chunked storage of multiple arrays of arbitrary
dimensionality.

In Zarr, metadata and chunks are stored as
separate files.

dataset.zarr/

metadata.json

var1/

0.0

0.1

1.0

In HDF5, metadata and chunks are all
stored within a single file.

dataset.h5

Header

Var1 Metadata

Var2 Metadata

Var3 Metadata

Var1
data

chunk
1,1

chunk
2,1

chunk
1,2

chunk
1,2

Var2
data

chunk
1,1

chunk
2,1

chunk
1,2

chunk
1,2

Var3
data

chunk
1

chunk
2

1.1

var2/

0.0

0.1

1.0

1.1

var3/

0

1

Legend

Common geospatial data formats and libraries

GDAL + OGR
(C)

JSON

Kerchunk
(fsspec

reference)

NetCDF
(C, Fortran)

HDF5

NetCDF-4
standards

HDF5
(C, Fortran)

Many
libraries
…

Zarr
(Python)

fsppec
(Python)

Xarray
(Python)

Zarr

Xarray Zarr
standard

Many
libraries
…

OpenDAP
server

Rasterio
(Python)

Vector data
(many formats)

Desktop
GIS

Web
mapping
services

Python has good tooling and community for cloud-native geospatial analysis (Zarr
format and library; fsspec), but other languages are behind. Support for network reads in
HDF5/NetCDF libraries would solve this; there has been progress, but current support is
not robust.

Desktop GIS and web mapping are the most popular methods for data analysis, but
fragmentation between multi-dimensional (NetCDF/Zarr) and geospatial (GDAL/OGR)
standards, tools, and communities inhibits usage of model data in these tools.

Fo
rm

at
s

Li
b

ra
ri

es

Raster data
(many formats)

File format

Standard

Library with robust network
file support

Library with experimental
network file support

Robust support

Conditional /
experimental support

Library does not interface
directly with files

Takeaways

(1) NASA, and other agencies and organizations, are moving their data into the
commercial cloud.

(a) Pros: Data centralization; greater interoperability between tools; analysis in place

(b) Cons: Opaque cost model; need to adjust computing paradigms and workflows; dealing with
egress

(2) Cloud-optimization of data generally means minimizing the number of API calls
required to read a dataset, through a combination of consolidated metadata headers
and well-thought-out chunking strategy.

(3) Getting Earth System model data into desktop GIS and web mapping tools is a great
way to broaden their usage, but this is difficult due to differences in the underlying
data models and fragmentation between modeling and geospatial communities.

