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Outline

(1) NASA is moving its Earth Science data into the commercial cloud. Why? 
What does mean for you?

(2) What do we need to do differently with data in the cloud? What does it 
really mean for data to be “cloud-optimized”?

(3) How do we get more people to use Earth System model data?



~11,000 datasets from ~1000 instruments totaling ~62 PB of data



NASA’s Distributed Active Archive Centers (DAACs):
A federated approach to data management

Physical Oceanography 
DAAC

Gravity, Sea surface Temperature, 
Ocean Winds, Topography, circulation 
and currents

Alaska Satellite Facility 
DAAC

SAR Products, Sea Ice, Polar 
Processes, Geophysics

National Snow and Ice 
Data Center DAAC

Frozen Ground, Glaciers, Ice Sheets, 
Sea Ice, Snow, Soil Moisture

Socioeconomic Data and 
Applications Center 

Human Interactions, Land Use, 
Environmental Sustainability, 
Geospatial Data

Ocean Biology DAAC

Ocean Biology, Sea Surface 
Temperature

Land Process DAAC

Land Cover, Surface Reflectance, 
Radiance, Temperature, Topography, 
Vegetation Indices

Global Hydrology 
Resource Center DAAC

Hazardous Weather, Lightning, 
Tropical Cyclones and Storm-induced 
Hazards

Crustal Dynamics Data 
Information System 

Space Geodesy, Solid Earth

Goddard Earth Sciences 
Data and Information 
Services Center

Global Precipitation, Solar Irradiance, 
Atmospheric Composition and 
Dynamics, Global Modeling

Level 1 and Atmosphere 
Archive and Distribution 
System (LAADS)

MODIS Level-1 and Atmosphere Data 
Products

Oak Ridge National 
Laboratory DAAC

Biogeochemical Dynamics, Ecological 
Data, Environmental Processes

LaRC Atmospheric 
Science Data Center

Radiation Budget, Clouds, Aerosols, 
Tropospheric Chemistry



Challenges facing NASA’s 
Earth Data ecosystem

Push for transdisciplinary, 
multi-mission science

Dramatic 
increases in 
data volume 
and complexity

Increased 
emphasis on 
open, 
accessible, 
and 
reproducible 
science
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What will change?

● It will be easier for DAACs to collaborate and develop 
tools that work with more datasets, now that they 
always have direct access to each other’s data.

● New options for analyzing data and developing tools “in 
place” in the cloud, without needing to download data.

What will stay the same?

● All NASA Earth Science data will continue to be 100% free 
and open to public.

● Existing data services (including direct download) will 
continue to work without disruption

● On-premise HPC will continue to play an important role in 
the NASA computing ecosystem
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ChallengesMany tools and 
workflows that rely 
on local hardware 
do not work (well) in 
the cloud

Planning and 
managing 
commercial cloud 
costs

Diversity of NASA’s 
Earth Science data 
and users makes it 
difficult to 
standardize data 
catalogs and tools

Working across 
different commercial 
cloud providers (e.g., 
egress costs)
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Integrating 
commercial cloud 
and on-prem (HPC) 
compute in a secure 
and cost-effective 
way



Amazon Web Services (AWS) regions

Anyone can launch an AWS service in any region, 
from anywhere, regardless of where they are 
physically located.

Moving and accessing data within a region is free 
and fast. Moving data out of a region is slower and 
costs money.

- Requester pays — Data user pays out of their AWS 
account

- Provider pays — Data provider pays out of their AWS 
account

- Under certain conditions (e.g., AWS Open Data 
Registry), AWS will pay storage + egress costs

Putting as much compute and storage as possible 
in the same region is essential to minimizing cost 
and maximizing performance.

NASA’s Earth Science data archive is in us-west-2 
(Oregon). NOAA’s data are currently in us-east-1 
(Virginia).



File system vs. network storage

Network-based object storage (e.g., S3)Filesystem storage (HDD, SSD)

Total read time [s]  =  Latency [s]  +  (Volume [MB]  ÷  Bandwidth [MB/s])
“Time to first byte”

Latency: Low (good)
- <0.1 ms for SSD; 1-10 ms for HDD

Bandwidth: Slow (bad)
- <100 MB/s for HDD; 200-500 MB/s for typical SSD; 

5000-7000 MB/s for top-line SSD

Prefer small chunk sizes that can be read using many small 
read operations.

Uses file system calls built into operating system (and every 
programming language).

Latency: High (bad)
- 100-200 ms; each API call costs (a little) money 

($0.0004/1000 requests)

Bandwidth: Fast (good)
- Up to 100,000 MB/s (within-region; out of region, 

depends on distance and internet bandwidth)

Prefer larger chunk sizes that minimize the number of 
requests. “Cloud-optimized” data formats are ones that 
minimize the number of API calls required to read a dataset 
through a combination of consolidated, predictably sized 
metadata headers and well-thought-out chunking strategy.

Uses HTTP requests (e.g., curl); requires special libraries or 
programming language abstractions (e.g., Python fsspec)



“Cloud-optimized” metadata

Bad

Header

Var1 Metadata

Var1 data

Var2 Metadata

Var2 data

Var3 Metadata

Var3 data

1 API call to open the file + 2 API calls per 
variable (1 to read the metadata, 1 to read 
the data) to read the data.

Good

Header

Var1 Metadata
Var2 Metadata
Var3 Metadata

Var1 data

Var2 data

Var3 data

1 API call to open the file and get 
metadata for all variables. Then, only 1 
API call per variable to read the data.



Array storage

x

y

t

Optimized for spatial 
analysis

Optimized for time 
series analysis

Draw a map at t=2

Extract time series at (2,1)

READ RANGE 7:12

READ 2; READ 8; READ 14

Draw a map at t=2

Extract time series at (2,1)

READ 2; READ 5; READ 8; READ 11; READ 14; READ 17

READ RANGE 4:6

Sequential reads are much faster than random reads.

For multi-dimensional datasets, there is a fundamental performance tradeoff in array storage for slicing 
along different dimensions.



x

y

t

Chunk size and shape

Draw a map at t=2

Extract time series at (2,1)

In binary formats like NetCDF-4 (HDF5) 
and Zarr, chunks are compressed, so it is 
impossible to read part of a chunk.

For a given use case, we want to minimize 
the number of API calls and minimize the 
read volume of unused data.

Again, there is a fundamental trade-off in 
chunking strategies for different access 
patterns. Download/read this chunk

Discard data point after 
reading

Strategy 1

Strategy 2

Strategy 3

Strategy 4



Geospatial data models

Vector-based / tabular

Examples: Row-based plain-text (e.g., CSV); 
columnar binary (e.g., Parquet, Feather, FST); 
relational database (SQL); point tile

X Y T Var1 Var2

1 1 1 … …

1 2 1 … …

2 1 1 … …

2 2 1 … …

1 1 2 … …

1 2 2 … …

2 1 2 … …

2 2 2 … …

Multi-dimensional, coordinate-based

lat (y)

lon (x)

time (t)

pres (z)

Var1 (lon,lat)
(2D, time-averaged)

Var2 
(lon,lat,time)
(2D, time-variant)

Var2 
(lon,lat,pres)
(3D, time-averaged)

Examples: NetCDF, Zarr, GRIB(2)

Raster

Unstructured Structured

Dimensions: (x, y)
Affine: [a1 a2 a3 a4 a5 a6]

Latitude = a1 + x*a2 + y*a3
Longitude = a4 + x*a5 + y*a6

Var1[t=1]

Var1[t=2]

Var2

Var2 (x/2,y/2)
(overview 2x)

Examples: GeoTiff, JPEG

Maximum flexibility, but minimal efficiency for 
storage and access.

Subsetting requires exhaustive search along all 
dimensions.

Sacrifice some flexibility for some efficiency. 

Subsetting requires exhaustive search, but 
only once along each dimension.

Least flexibility, but most efficiency.

Subsetting can be done analytically using affine 
transform.

Overviews (data stored at different zoom levels) 
are very useful for dynamic visualization.



HDF5 vs. Zarr
Both formats fill the same niche: Binary, compressed, chunked storage of multiple arrays of arbitrary 
dimensionality. 

In Zarr, metadata and chunks are stored as 
separate files.

dataset.zarr/

metadata.json

var1/

0.0

0.1

1.0

In HDF5, metadata and chunks are all 
stored within a single file.

dataset.h5

Header

Var1 Metadata

Var2 Metadata

Var3 Metadata

Var1
data

chunk 
1,1

chunk 
2,1

chunk
1,2

chunk
1,2

Var2
data

chunk 
1,1

chunk 
2,1

chunk
1,2

chunk
1,2

Var3
data

chunk 
1

chunk 
2

1.1

var2/

0.0

0.1

1.0

1.1

var3/

0

1



Legend

Common geospatial data formats and libraries

GDAL + OGR 
(C)

JSON

Kerchunk
(fsspec 

reference)

NetCDF
(C, Fortran)

HDF5

NetCDF-4 
standards

HDF5
(C, Fortran)

Many 
libraries
…

Zarr 
(Python)

fsppec 
(Python)

Xarray 
(Python)

Zarr

Xarray Zarr 
standard

Many 
libraries
…

OpenDAP
server

Rasterio
(Python)

Vector data 
(many formats)

Desktop 
GIS

Web 
mapping 
services

Python has good tooling and community for cloud-native geospatial analysis (Zarr 
format and library; fsspec), but other languages are behind. Support for network reads in 
HDF5/NetCDF libraries would solve this; there has been progress, but current support is 
not robust.

Desktop GIS and web mapping are the most popular methods for data analysis, but 
fragmentation between multi-dimensional (NetCDF/Zarr) and geospatial (GDAL/OGR) 
standards, tools, and communities inhibits usage of model data in these tools.

Fo
rm

at
s

Li
b

ra
ri

es

Raster data 
(many formats)

File format

Standard

Library with robust network 
file support

Library with experimental 
network file support

Robust support

Conditional / 
experimental support

Library does not interface 
directly with files



Takeaways

(1) NASA, and other agencies and organizations, are moving their data into the 
commercial cloud.

(a) Pros: Data centralization; greater interoperability between tools; analysis in place

(b) Cons: Opaque cost model; need to adjust computing paradigms and workflows; dealing with 
egress

(2) Cloud-optimization of data generally means minimizing the number of API calls 
required to read a dataset, through a combination of consolidated metadata headers 
and well-thought-out chunking strategy.

(3) Getting Earth System model data into desktop GIS and web mapping tools is a great 
way to broaden their usage, but this is difficult due to differences in the underlying 
data models and fragmentation between modeling and geospatial communities.


